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Abstract 
This Platform Security Model motivates the set of platform security specifications that target internet and 
other forms of connected compute-centric devices. This document underlies the PSA Certified™ framework 
and certification scheme. 

Key goals for designing devices based on essential security properties are described in this security model. 
These essential properties are used to define a Platform Root of Trust for a platform on which end-products 
can be built. This Platform Root of Trust covers the set of hardware and firmware necessary to support 
secure and non-secure processing.  

A connected device needs to operate within an ecosystem. This document outlines how such a device and 
some of the essential security features might fit within an ecosystem. It does this by illustrating typical 
entities, capabilities and processes required to securely deploy connected services.  
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Document Outline 
Section 1: Platform Security Model   

Introduces the Platform Security Model and its goals, the relevance of a device within an overall 
ecosystem, discusses typical device models.  
 

Section 2: Platform Root of Trust 
Introduces the Platform Root of Trust (PRoT), PRoT services, ARoT services. The concepts of 
partitions, partition management and processing environments are also introduced. The elements in a 
typical implementation are presented. 

 
Section 3: PRoT Parameters 

Introduces the minimal set of Platform Root of Trust (PRoT) data items to identify and secure the 
platform. 
 

Section 4: PRoT Security Lifecycle 
Introduces a generic security lifecycle for the Platform Root of Trust. 

 
Section 5: PRoT Binding 

Introduces the minimal set of Platform Root of Trust (PRoT) data items to identify and secure the 
platform. 
 

Section 6: PRoT Secure Boot and Firmware Update 
Introduces secure boot, firmware update, and system suspend and hibernation. 

 
Section 7: PRoT Services 

Introduces the elements of the Platform Root of Trust, including Internal Trusted Storage, Binding, 
Cryptography and Initial Attestation service. 

 
 

Potential for Change 
The contents of this specification are subject to change. 

In particular, the following may change: 

• Feature addition, modification, or removal 

• Parameter addition, modification, or removal 

• Numerical values, encodings, bit maps 

 

Current Status and Anticipated Changes  
First alpha release, minor changes and clarifications to be expected. 

 

Feedback on this Book 
If you have comments on the content of this book, send an e-mail to arm.psa-feedback@arm.com.  Give: 

• The title (Platform Security Model) 

• The number and release (JSADEN014 1.1 Beta 0) 
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• The page numbers to which your comments apply 

• The rule identifiers to which your comments apply, if applicable 

• A concise explanation of your comments 

We also welcome general suggestions for additions and improvements. 

 

Open Issues 

Appendix mapping to PSA Certified requirements 

Appendix mapping to TMSA security objectives. 
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1 Platform Security Model Overview 
This Platform Security Model (PSM) is one document in a holistic set that includes threat models and security 
analyses, security requirement specifications and application programming interfaces, all architecture-
agnostic. Together with an open-source reference implementation and test suites, this enables consistent 
design-in at the right level of security.  

This framework builds upon best practice from across the industry and is aimed at different entities 
throughout the supply chain, from chip designers, software vendors and device developers to cloud and 
network infrastructure providers. Though the focus is on compute-centric local network or internet 
connected devices, many aspects are relevant for non-connected devices. No assumptions are made about 
the solution architecture, only that the properties described are met whether using a resource- and 
performance-constrained microcontroller or a resource-rich powerful microprocessor-based platform. 

This security model is the top-level document for the other platform security specifications and defines a 
common language, high-level robustness rules, and models.  

Products may go through a security evaluation, such as PSA Certified, to provide a measure of the robustness 
of the implementation. 

1.1 The 10 Security Goals 

The set of core security goals given below provide a high-level, abstract, way to think about the essential 
features that are necessary to secure and establish trust. Abstraction allows these goals to be applied as 
required, for example, to an end user connected device, a hardware component, a software component, or a 
service. In describing the goals, the term device is used to represent any entity at any level that must be 
secure and trustworthy.   

 

Goal 1:  Devices are uniquely identifiable. 

In order to interact with a specific device instance, that instance must be uniquely identifiable. The identity 
must be attestable and that attestation verifiable as a means of proving the device identity, see Goal 3. 

 

Goal 2:  Devices support a security lifecycle. 

The security state of a device within its security lifecycle depends on software versions, run-time 
measurements, hardware configuration, status of debug ports, and on the product lifecycle phase. Product 
lifecycle phases include, for example, development, deployment, returns, and end-of-life. Each security state 
defines the security properties of the device. The security state must be attestable, see Goal 3, and may 
impact access to bound data, see Goal 9. 

 

Goal 3:  Devices are securely attestable. 

The trustworthiness of a device must be established. This requires that its identity, see Goal 1, and security 
state, see Goal 2, are proven through attestation. To have validity, device identification and attestation data 
must be part of a device governance regime. 

 

https://www.psacertified.org/
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Goal 4:  Devices ensure that only authorized software can be executed.  

Secure boot and secure loading processes are necessary to ensure that only authorized software can be 
executed on the device. See also Goal 6. Allowing unauthorized software is acceptable only if such software 
cannot compromise the security of the device. 

 

Goal 5:  Devices support secure update.  

Device software, credentials, programmable hardware configuration, must be updateable to resolve security 
issues or to provide feature updates. Updates must not compromise the device security. Authentication of an 
update is required. However, execution of any updated software must be authorized in accordance with 
Goal 4.  

 

Goal 6:  Devices prevent unauthorized rollback of updates. 

Updates are necessary to resolve known security issues, or provide feature updates, see Goal 5. Preventing 
rollback, known as anti-rollback, to a previous version with a known (and subsequently fixed) vulnerability is 
essential. However, authorized rollback for recovery purposes may be allowed. 

 

Goal 7:  Devices support isolation.  

Isolation of a trustworthy service from less trusted or untrusted services is essential to protect the integrity 
of that service. More generally, isolation boundaries aim to prevent one service from compromising other 
services, for example, between any on-device services and between on-device services and the connected 
world. 

 

Goal 8:  Devices support interaction over isolation boundaries. 

Interaction over isolation boundaries, see Goal 7, is essential if isolated services are to serve a purpose. Any 
such interaction must not be able to compromise the interacting services or device. This will require 
validation of exchanged data. It may also be necessary to ensure the confidentiality and integrity of any data 
exchanged. 

 

Goal 9:  Devices support unique binding of sensitive data to a device. 

Sensitive data, for example, user or service credentials, or secret keys, must be bound to a device to prevent 
disclosure outside of the device. It may also be required to bind such data to prevent disclosure beyond its 
owner. Inherently secure storage or confidentiality and integrity assured storage may be used. Where 
binding relies on cryptography and keys, see Goal 10, the keys are sensitive data and so must be bound to the 
device or the data owner. It may also be necessary to bind the data to the security state, for example, to deny 
access during debug, see Goal 2. 

 

Goal 10:  Devices support a minimal set of trusted services and cryptographic operations 
that are necessary for the device to support the other goals. 

Trusted services may include configuration of the hardware to support security lifecycle (see Goal 2), 
isolation (see Goal 7), and cryptographic services that may use bound secrets (for example, keys) used to 
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support attestation (see Goal 3), secure boot and secure loading (see Goal 4), and binding of data (see 
Goal 9). The trusted services must be kept as small as possible to enable analysis and reduce the likelihood 
flaws. 

These goals inform and are embodied in the platform security specifications that are designed to help in the 
development and deployment of secure products. It is recommended that all features are implemented. 
However, the features supported to secure a device are determined by, for example, the intended application 
domain and cost, by applicable threat models, by applicable national standards, by ecosystem operators, and 
by any certification scheme. However, implementing the security features to increase the security level and 
provide product differentiation is a motivation behind this document. 

1.2 Connected Devices Within an Ecosystem 

Devices are expected to be deployed within the context of an ecosystem. The ecosystem provider is expected 
to define the requirements for a device based on technical, commercial, and regulatory requirements, and the 
security processes of the provider. These devices are expected to comply with a variety of functional and 
security requirements, depending on the use cases of the deployment ecosystem. A generic ecosystem is 
outlined in Figure 1, and the essential platform security elements are described. 

 

 

Figure 1: Generic Ecosystem 

• Security specifications enable the design and deployment of compliant devices that are compatible 
with the ecosystem requirements: 

o The Platform Security Model, this document, defines the top-level security concepts, 
identifies, and defines the Platform Root of Trust and generic Platform Root of Trust services 

o Technical specifications define the security requirements, outline solution architectures, and 
provide the necessary mitigations identified by threat modelling and security analysis. This 
includes generic material and references other standards that can be applied to any 
implementation 



JSADEN014 Copyright © 2017 - 2021 Arm Limited or its affiliates. All rights reserved.  Page 11 
1.1 Beta 0  Non-Confidential 

o Reference architectures are any other applicable specifications that define, for example, 
hardware and software functional and robustness requirements, and standardized functional 
interfaces 

• Certification and compliance show that a deployed device is compliant and compatible with the 
ecosystem requirements 

o Threat Models and Security Analyses (TMSA) identify use case-specific security threats and 
motivate use case-specific security functional requirements 

o Compliance testing, for example PSA Functional API Certification, deals with interfaces, 
functional behavior, and interoperability 

o Certification programs, for example PSA Certified, assess the implementation of the security 
functional requirements of a compliant device for vulnerability against the identified threats. 
The robustness that is required is based on use case, cost and security trade-off and the 
assessment scope. Certification schemes are an assessment and not a guarantee that a device 
is free from vulnerabilities 

 
Figure 1 also illustrates the following elements that are typical in an ecosystem, but not defined by in this 
security model: 

• Design and manufacture: Secure-by-design devices should be designed and then manufactured 
based on security specifications with the aim of achieving robustness certification and functional 
compliance. Device manufacture includes the provisioning of root secrets and other sensitive 
information. See section 4. 

• Deployment: Service providers manage and support deployed devices through: 

o Device management: Device manufacturers provide device manufacture data, provisioning, 
firmware update services, and other support functions. Device management considers 
devices throughout their lifetime, from factory provisioning through deployment, any re-
deployment, in-field analysis, repair, to end-of-life. Data specific to the device management 
system must be defined by that system. The storage of such data may make use of the 
Platform Root of Trust services 

o Device verification: Devices are enrolled with a device verification system, including 
attestation verification. Depending on ecosystem requirements, device and attestation 
verification services are expected to be deployed by manufacturers, service providers, or by 
industry consortia 

1.3 Device Models 

The device models defined by PSM covers three fundamental parts: 

1. The overall trust anchor for the system. This ensures the platform is securely booted, configured, 
establishes the secure environments required to support the protection of security sensitive 
operations, and contains the root parameters. This is called the Platform Root of Trust (PRoT). 

2. The secure environment for the PSM-defined generic security services, referred to as PRoT services 
(section 7). These services facilitate the PRoT and are intended to be used by application specific 
security services and functionality. 

3. The secure environment for any Application Root of Trust (ARoT) services. An ARoT service can be 
any application defined security service, which may make use of the PRoT services. Note that some 
systems may need nothing more than the PRoT and PRoT services. 

https://www.psacertified.org/development-resources/certification-resources/#functionalapi
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There are many ways to build a PSM compliant device. For this reason, the following generalized concepts 
are used. 

• A partition is defined as some processing with a defined logical boundary. Typically, this means 
software but may also apply to hardware, including hardware controlled by software. Interaction with 
a partition and its data, both in- and out-bound, must be only via defined interfaces with defined 
behavior. Abuse of the interface must not be able to compromise the partitions on either side of the 
boundary. Partitions are managed by a partition management function, see section 2. Partitions may 
be nested within other partitions, see section 1.3.1. 

• A partition manager is used to allocate resources to the partitions that it manages, for example, 
communication channels, memory, interrupts, peripherals, and processing time. A partition manager 
will have a defined logical boundary with defined interfaces and interactions (in this sense it is also a 
partition). Typically, the partition management function comprises software that dynamically 
manages partitions. In the case where there is only one partition, the partition management function 
may not exist. Note that there may be some elements of partition management that are static and set 
when the partition manager is initialized.  

• A processing environment hosts partitions, including any partition manager (and the partitions that it 
manages), and attributes the partitions with specific security properties, though these might be trivial 
for any processing not considered security sensitive. For example, a processing environment might, 
through hardware design, have sole access to system resources that enforce isolation. A sub-system 
with hardware-based countermeasures against physical attacks is another example. Processing 
environments can be necessary to mitigate specific threats and attacks, or to comply with different 
certification schemes and assurance levels. Applying the most demanding of the attributes to the 
entirety of a system is often not practical, and non-security motivations may also apply, for example, 
real-time characteristics, system architecture considerations, re-use of existing designs, separation of 
responsibilities and ownership. Processing environments may be established at run-time, typically, 
but not necessarily, during system boot, or they may be inherent from the design of the system. This 
can lead to devices with more than one trust anchor if the isolation between them is fixed, for 
example, in the hardware design. 

A minimal PSM compliant device is illustrated in Figure 2. There are two processing environments. One, 
labelled Secure Processing Environment (SPE), hosts partitions, called secure partitions, for PSM-defined 
security processing. The other, labelled Non-Secure Processing Environment (NSPE), hosts partitions for all 
other processing. The SPE shown in Figure 2 hosts the following PSM elements: 

• The Platform Root of Trust, which is discussed in section 2, comprises:  

o The Immutable Platform Root of Trust, which is inherently trusted. This largely refers to the 
hardware, see section 2.1, including any firmware that cannot be updated on a production 
device. 

o The Updateable Platform Root of Trust, such as firmware and configuration that is trusted by 
verification through a chain of trust tied to the trust anchor and can be updated on a 
production device. This largely refers to software, see section 2.2, but may include 
configurable hardware that can be changed. 

o The Platform Root of Trust Services, which includes the secure storage, cryptographic, and 
attestation services that are covered in section 7. Typically, these are part of the updateable 
Platform Root of Trust. 

• Any Application Root of Trust (ARoT) service(s), which are not covered in this document. They are 
expected to use interfaces provided by the PRoT services but must have no direct access to the 
immutable PRoT. Typically, ARoT services are updateable. 
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A secure partition must only host the PRoT, the PRoT services, or any ARoT services. All other processing 
must be completely outside any secure partition and secure processing environment. 

 

   

Figure 2: Minimal PSM device  

 

  

Figure 3: PSM device with two Secure Processing Environments 
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PSM allows for systems where there is the need for more than one secure processing environment (SPE). For 
example, Figure 3 illustrates a device with two SPEs, one for the PRoT and the other for the PRoT services 
and any ARoT services. See also section 1.3.3. 

PSM is concerned with the protection of the PRoT, the PRoT services and any ARoT services. Provided the 
PSM security requirements are not violated, non-PSM security processing environments can co-exist, as 
shown in the example on Figure 4. As the trust anchor for the device, the PRoT may need to include 
functionality specific to any non-PSM security service, and the PRoT SPE will need to meet any specific non-
PSM processing environment security properties. 

 

  

Figure 4: PSM device with non-PSM processing environment 

In practice it may be necessary to distribute the PRoT and PRoT services functionality over multiple 
partitions and, possibly, multiple secure processing environments. Such distribution leads to the need to 
either restrict access to, or protect, the transactions between the defined interfaces of the distributed 
partitions.  

Access to transactions between partitions should be restricted only to those interacting partitions or agents 
that are trusted, for example: 

• Access can be permitted, for example when on the same die, through static design topology or though 
secure configuration that is set and protected by the PRoT  

• Where access cannot be denied, cryptography can be used to ensure that the transactions are 
protected in at least confidentiality, but where necessary are protected also in integrity and against 
replay 
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It is also necessary to handle any unauthorized substitution of any one of those interacting partitions in a safe 
and secure way, for example: 

• When on the same die, the hardware components are physically inseparable 

• Where on more than one die, more generally where physical inseparability cannot be guaranteed, 
then separation must result in safe and secure failure. For example, using cryptography to ensure that 
the transactions are protected in integrity, confidentiality, and against replay 

The mechanisms deployed to meet the accessibility and inseparability objectives will depend on the security 
requirements derived from threat modelling, any applicable certification scheme and related protection 
profiles. 

1.3.1 Isolation 

Isolation ensures that processing in one partition cannot compromise any code, run-time state including 
hardware, and secrets, of any other partition either directly or via misuse of software-controlled hardware 
elements. 

PSM requires each secure processing environment (SPE) to be isolated by hardware means from all other 
processing environments. Figure 5 illustrates SPE isolation, shown by the red border, from the NSPE in the 
minimal PSM system of Figure 2. Any run-time hardware required to enforce this isolation must be 
configurable only by the processing environment management function fulfilled by the PRoT, see section 2.2. 
Non-PSM processing environment isolation requirements, for example, isolation from the SPEs, though very 
advisable, is not defined by PSM. 

 

  

Figure 5: Minimal SPE isolation from NSPE 

Isolation between partitions is not defined by PSM but will depend upon the security requirements and any 
applicable certification scheme. Figure 6 illustrates, with an orange border, the isolation of secure partitions 
that form the PRoT and PRoT services and the isolation of secure partitions that form the ARoT services. It is 
recommended that all processing, especially software, is designed assuming that the isolation boundaries are 
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enforced. This encourages the development of robust solutions that will continue to work when, for example, 
the isolation is activated during later stages of the development process or where the solution is re-used on 
devices that do enforce the isolation. 

 

    

Figure 6: ARoT/PRoT secure partition isolation 

Isolation of partitions is handled by a partition management function (see section 2.2). This function may be 
fulfilled, for example, by an Operating System, which may, itself, be a partition isolated from other virtual 
machines by a hypervisor that also fulfils a partition management function. In other words, a partition may be 
nested in another partition. Each outer most partition manager is hosted in a single processing environment. 
Note that a nested secure partition can only be nested within another secure partition, and hosted in a secure 
processing environment. 

Figure 7 illustrates an example where a processing environment includes a partition management function. 
One of the managed partitions contains another partition management function that manages two partitions. 
The orange border illustrates where isolation has been enforced by the applicable partition manager. 
Multiple processing environments, as in Figure 3, will require a partition management function for every 
processing environment that supports more than one partition. 

 

 

Figure 7: Partitions, nested partitions, and isolation 
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1.3.2 Immutable Platform Root-of-Trust Protection 

Together, the immutable PRoT Boot ROM (see section 2) and the PRoT Root Parameters (see section 3) form 
the inherently trusted anchor for the system. Any compromise means that the anchor may no longer be 
trusted. Consequently, the PRoT and PRoT services may no longer be trusted. Any ARoT services may not be 
trusted. Trust in the entire device may be lost. 

To minimize this risk, all access to the root parameters and the Boot ROM should be denied as soon as 
possible after they have fulfilled their purpose, which typically means at the point where control passes to the 
updateable PRoT. This is termed Temporal Isolation. All processing before a temporal isolation boundary 
must complete its task and handover to the stage after the boundary; the only way back requiring a reset 
leading to a system boot. This should be enforced in hardware. 

Figure 8 illustrates temporal isolation in the secure boot flow of section 6. 

 

  

Figure 8: Temporal isolation during secure boot 

Only state explicitly provided for use by the processing to be performed after the temporal boundary must be 
accessible after the boundary. For secure boot, that state will likely be derived from sensitive assets in the 
root parameters and must be stored on-chip because external storage exposes the state to attack. Note that 
re-use of code from before a temporal boundary to reduce the overall footprint may be acceptable provided 
it does not expose any sensitive data that the temporal boundary is there to protect.  

The immutable PRoT must also be protected from compromise throughout the lifetime of the product, see 
section 4. 

1.3.3 Trusted Subsystems  

A trusted subsystem is any configurable or updateable security functionality, possibly containing a processor 
capable of code execution, that the PRoT or PRoT services rely on for correct operation. Examples include 
on-chip security co-processors, and off-chip secure elements, Trusted Processing Modules or Subscriber 
Identity Modules. The example in Figure 9 illustrates a device with a trusted subsystem and identifies the 
isolation boundaries as described in section 1.3.1. 

Typically, a trusted subsystem is used because of its security properties and, therefore, is a secure processing 
environment. The result is a PRoT, or PRoT services, that is distributed across multiple secure processing 



JSADEN014 Copyright © 2017 - 2021 Arm Limited or its affiliates. All rights reserved.  Page 18 
1.1 Beta 0  Non-Confidential 

environments. There must be no reliance on a trusted subsystem until it is established that there has been no 
unauthorized substitution, see section 1.3.  

A trusted subsystem may have its own root of trust and its own security lifecycle. However, all configuration 
and updates must be performed by the PRoT, and that configuration and state must always be attestable by 
the PRoT, see section 7.3. 

 

  

Figure 9: PSM Device with a Trusted Subsystem 



JSADEN014 Copyright © 2017 - 2021 Arm Limited or its affiliates. All rights reserved.  Page 19 
1.1 Beta 0  Non-Confidential 

2 Platform Root of Trust 
The Platform Root of Trust (PRoT) includes the hardware and software components that are responsible for 
system level security configuration, anchoring the secure boot process to establish a chain of trust for the 
platform, establishing any partitions for its own functionality and establishing the isolated secure processing 
environments. The PRoT services provide functionality available to the system beyond the initialization 
phase, for these, PSA Certified define some interfaces in the form of APIs and ABIs. 

The set of functionalities illustrated in Figure 10 is indicative of the minimal PSM device model shown in 
Figure 2. Figure 10 also illustrates a typical split between the hardware and software1 parts of an 
implementation. Mapping of the functions to specific partitions and secure processing environments will be 
specific to each platform architecture. For example, a system like that shown in Figure 4 will likely have a 
secure partition management function for each of the SPEs, and possibly partition management functions for 
the NSPE and any non-PSM processing environments. 

 

  

Figure 10: Minimal set of platform security services 

2.1 Hardware Elements 

The Platform Root of Trust includes the following hardware elements. Access to these hardware elements 
should be possible only via the PRoT and PRoT services. 

• The Boot ROM contains the first code to execute after release from reset and must be on-chip. The 
Boot ROM code and the configuration that it performs establishes the trust anchor for the chain of 
trust for the platform and device. The term ROM is used to indicate that it must not be modifiable 
after manufacture. The Boot ROM is typically implemented using Mask ROM, permanently locked 

 
1 In this document no distinction is made between software and firmware. 
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one-time-programmable memory (OTP), or locked on-chip flash, or some combination of these. See 
section 6. 

• Isolated locations contain sensitive data stored in non-volatile memory. There must be some locations 
on-chip, typically OTP, or on-chip flash (if practical). Access should only be by the PRoT or PRoT 
services. Some on-chip isolated locations may be used by the Boot ROM during system configuration, 
and some may, via a hardware path, directly control cryptographic hardware or other security 
configuration hardware. Off-chip storage hardware can be classed as a trusted subsystem, see 
section 1.3.3. 

• Shielded locations are tamper-resistant isolated locations intended to hold provisioned secrets, 
including the PRoT root parameters, see section 3. Tamper resistance may include mechanisms to 
make active probing difficult, for example, physical disassembly for access to internal buses and 
interfaces, may include countermeasures against side-channel attacks, for example, power and timing 
analysis, or may include protection against power and clock glitching. However, the extent of tamper-
resistance and the choice of data stored will depend on the threats identified during threat analysis 
that are applicable to the deployment requirements, or to any certification requirements. Off-chip 
tamper resistant storage hardware can be classed as a trusted subsystem, see section 1.3.3. 

• Isolation hardware is the on-chip hardware that is necessary to implement the isolation requirements 
covered in sections 1.3.1 and 1.3.2. The extent of the isolation depends on any certification scheme, 
deployment requirements or to mitigate threats identified during threat analysis. Control and 
configuration of the hardware that isolates the processing environments must be by the PRoT. 

• Cryptographic on-chip hardware may be available. On-chip hardware may provide performance 
benefits and make direct use of keys and configuration stored in on-chip isolated locations or shielded 
locations. Some countermeasures against side-channel attacks and resistance to fault injection may 
be possible, however, off-chip cryptographic hardware may provide stronger physical protection 
should that be needed. See below and section 1.3.3 on trusted sub-systems. 

• A trusted subsystem may provide functionality that the PRoT or PRoT services rely on for correct 
operation. For example, a trusted subsystem may provide cryptographic operations, such as 
encryption, decryption, and signature generation, while denying all access to the key material stored 
and used for the operation. See section 1.3.3. 

• Lifecycle state management represents any hardware used to indicate or control operations that are 
state dependent. See section 4. 

2.2 Software Elements 

The Platform Root of Trust and services typically includes the following software elements, as shown in 
Figure 10. 

• Secure boot extends the chain of trust anchored in the Boot ROM to the system. Secure boot is a 
mandatory requirement for all PSM secure processing environments. Secure boot of any other 
processing environments is a common requirement, though will depend on the specific security 
requirements. 

• Secure update enables the immutable PRoT, the PRoT services and any ARoT services to be updated 
to mitigate any vulnerabilities identified. Secure update cannot apply to the immutable PRoT. Secure 
update of other processing is a common requirement and is recommended. 

• Processing environment management enforces any required isolation between the managed 
processing environments and enforces any association of system-level resources to those processing 
environments. All PSM secure processing environments must be isolated from any other processing 
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environments. This function may also be responsible for allocating and scheduling the use of shared 
processing resources between the managed secure processing environments. 

• Secure partition management enforces any required isolation between the managed secure 
partitions and controls access to resources for each secure partition, for example, to access to 
Internal Trusted Storage and operations performed by the Cryptographic service, see below and 
section 5. This function may also be responsible for allocating and scheduling the use of shared 
processing resources between the managed secure partitions. 

• Internal Trusted Storage (ITS) is a PRoT service that provides partition-based access control to 
isolated and shielded locations for all PSM secure processing environments. That means that ITS is 
available to any secure partition that implements PRoT or ARoT service functionality. See section 7.1. 

• Secure Storage is a PRoT service that provides secure storage in non-isolated storage for any ARoT 
service, see sections 2.3 and 7.4. 

• Cryptographic operations is a PRoT service that provides partition-based access control to the use of 
keys and cryptographic processing for all secure partitions that implement PRoT or ARoT 
functionality. See section 7.2. 

• Initial Attestation is a PRoT service that a allows a validation entity, as shown in Figure 1, to validate 
the trustworthiness of the Platform Root of Trust, its implementation, and updateable components 
loaded during secure boot. See section 7.3. 

Provided that all processing environment isolation requirements are upheld, the PRoT services that support 
internal trusted storage, the cryptographic operations and initial attestation may be available to non-PSM 
processing environments, for example, to the NSPE shown in Figure 2, or the Non-PSM Processing 
Environment shown in Figure 4. 

2.3 Non-Isolated Storage 

Non-isolated storage, as shown in Figure 10, is storage where access control either logically or physically (if 
off-chip or removable) cannot be enforced by the PRoT. Non-isolated storage is useful for application-
specific data, which may include cryptographically protected data where the required keys are protected by 
the PRoT service. Section 7.4 outlines how to protect any sensitive data through the use of binding, see 
section 5 and the cryptographic service, see section 7.2. 
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3 PRoT Parameters 
A device platform requires at least the parameters, or equivalent, listed below and in Table 1. 

• Implementation ID; public data that uniquely identifies the implementation. Typically, this identifies 
the device manufacturer, the device model and version number, and any other data necessary to 
uniquely identify the device and the Immutable PRoT 

• Instance ID: a public value that identifies the specific instance of the device identified by the 
Implementation ID. This also allows identification of the instance Initial Attestation Key, and, possibly, 
the Hardware Unique Key. 

• Hardware Unique Key: a secret key unique to each device instance that is used to derive other device 
unique secrets and to bind data to that instance (see section 5) 

• Boot Validation Key: the public part of an asymmetric key pair used for authentication during secure 
boot, however, see section 6 

• Initial Attestation Key: a secret private key from an asymmetric2 key-pair accessible only to the Initial 
Attestation service, see section 7.3. To prevent cloning or spoofing, this key must be unique to each 
device instance or to a collection of identical devices. They should not be shared between different 
versions of a device, between different devices, or between manufacturers. 

• Boot Decryption Key: a secret symmetric key used where the boot images authenticated by the Boot 
ROM are encrypted. Note that the device requirements or any applicable certification scheme may 
not require the images to be encrypted. 

 

Table 1: Platform parameters 

Parameter 
Initial 
param 

Updateable 
param 

Security  
class 

Recommended Storage Type 

Implementation ID Yes Yes Public Isolated Location 

Instance ID No Yes Public Isolated Location or derived 

Hardware Unique Key Yes No Secret Shielded Location 

Boot Validation Key Yes No see section 4 Isolated Location or Boot ROM 

Initial Attestation Key Yes Yes Secret Shielded Location or derived 

Boot Decryption Key Yes No  see section 4 Isolated Location or Boot ROM 

 

As a consequence of temporal isolation boundaries for secure boot, see sections 6 and 6.4, the parameters 
are categorized as follows, based on whether each is secret or public. Secret means that the data that must 
not be accessible to unauthorized agents, and public means that the data may be shared inside and outside 
the device. 

• Initial parameters are those used by the immutable PRoT. Depending on the certification profile, 
initial parameters are stored in isolated locations or shielded locations. They should only be directly 

 
2 The ecosystem may permit symmetric cryptography if the device cannot support asymmetric operations. 
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accessible or useable by the immutable PRoT, see section 6, but can be copied to, or used as seeds for 
derivation of Initial Boot State data, see section 6.4.1. 

• Updateable parameters are those that are used by the PRoT services. They should only be directly 
accessible by the updateable PRoT code and can be copied to or derived and stored in the Main Boot 
State, as required, see section 6.4.2. 
 

Direct use of a Shielded Location or Isolated Location, or using derivation, is implementation specific. In 
general, derivation can be more flexible and future proof. Derivation can support additional strategies for 
protecting secret parameters and may reduce the risk of exposure of secret parameters during device 
manufacture. However, derivation may require additional computational resources at boot. 
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4 PRoT Security Lifecycle 
A lifecycle defines the states of an object through its lifetime. Each security state in the security lifecycle of a 
device defines the security properties in that state. Security state can depend on: 

• Software versions 

• Run-time status such as data measurements, hardware configuration, and status of debug ports 

• Product lifecycle phase, for example, development, deployment, returned to manufacturer, or end-of-
life 

This section is concerned with how the Platform Root-of-Trust and its data and secrets may be compromised 
when debug is enabled after the platform has been secured, and how to ensure valid attestation only in 
attestable states. The generic security lifecycle shown in Figure 11 is intended to capture only the minimum 
set of notional lifecycle states and transitions. The described characteristics of each state will need to be 
related to the actual states that arise in an implementation and deployment. 

 

 

Figure 11 : Generic Platform Root of Trust security lifecycle 

• Device assembly and test: The device will be running manufacture and diagnostic software. This is not 
a secure state and, therefore, is not an attestable state 

o Hardware debug interfaces may be open, secure boot may not be enabled 

o If secure boot is already enabled, manufacture and diagnostic software should not be signed 
by the same authority as the final production software. There must be the ability to revoke 
any manufacture and diagnostic software certificates. 

o Test secrets and identities may be present. Production platform security parameters must 
not be present 
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• PRoT Provisioning: The device is programmed with production platform security parameters, see 
Table 13, and is configured so it can enter the Secured state. This is not a secure state and, therefore, 
not an attestable state 

o Production platform security parameters are provisioned and locked to prevent modification. 
Random values that are generated on the device should use a random source with sufficient 
entropy. Where parameters are provisioned separately, for example on a secure element, 
then it should not be possible for any device software to access or perform any operations 
with them until the device has reached this state 

o Hardware debug ports should be disabled, or an access control mechanism activated 

o Secure boot should be enabled 

o Only signed production software should be present. Manufacture and diagnostic software 
must not be present after any use in the PRoT provisioning process. 

o Once the device has been provisioned it may be enrolled with a device management system. 
This will declare the existence of the device to the ecosystem 

• Secured: The PRoT is fully operational and secured. This is the operational security state for most of 
the life of the device. Only in this state do the platform security parameters become available to any 
PRoT software. Provisioning of any application-specific data that is to be protected using PRoT 
services can now be performed. This is expected to require manufacture reporting for tracking and 
identification of fully secured devices. This is a secure and attestable state 

• Debug: Figure 11 shows non-PRoT debug and PRoT debug states. If entering either debug state is 
supported once a device is in the Secured state, then a system reset is required. This is because the 
device includes production secrets and the act of reset requires the removal of, or denial of access to, 
any previous data and derivation of Secured state sensitive data. Only if the device can still be 
considered trustworthy after debug can it be returned to the Secured state; this is called recoverable 
debug. Otherwise, debug is considered as non-recoverable, see section 4.1 

• Decommissioned: Entering this state requires a system reset. This is because the device includes 
production secrets and the act of reset requires the removal of, or permanent denial of access to, any 
previous data and derivation of Secured state sensitive data. This is not a secure state and so not an 
attestable state 

o Production platform security parameters secrets should be permanently inaccessible, 
denying attestation and access to any bound data. The overall product lifecycle may require 
non-secret platform identities to remain accessible 

o It is not possible for the device to leave the Decommissioned state unless a full factory reset is 
possible, and the device becomes indistinguishable from a new device. This means that the 
device can be securely re-provisioned with a new set of platform security parameters stored 
in Isolated Locations or Shielded Locations, or in the Boot ROM, effectively resulting in a new 
device instance 

o Revocation of the device by the device management system can be used to ensure that the 
device is no longer operational. This is necessary even if the device can be factory reset 

Additional states and sub-states may exist in any real device. Any sub-state must retain the properties of its 
parent. Both parent and sub-states must always be attestable once a device enters an attestable state. The 
security state is included in the PRoT attestation claims, see section 7.3. Therefore, it is not permitted for the 
security state to change without a device reset if either the current state or the new state is attestable. 

 
3 This may include the Boot ROM firmware if not a design-time mask ROM. 
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4.1 Debug 

It may be necessary to debug a device that has reached the Secured state in its lifecycle, see Figure 11. Debug 
during product development is likely to be on non-secure parts or with secure parts provisioned with 
development credentials. 

When the device is in Secured state, logging of events or reporting of diagnostics in a way that does not 
expose sensitive data and does not affect the trustworthy operation of the device is permitted. The 
ecosystem may require that such logs and reports are only accessible by a device management system, and 
are integrity and confidentiality protected. This is called non-intrusive debug. 

Debug that is more intrusive than event logging depends on the access level that is granted to the debugging 
agent. For example, it is possible that device-sensitive data can be compromised or that secure boot may be 
circumvented, meaning that the device is no longer trustworthy. 

This PSM is concerned with protection of the PRoT and PRoT services when the device is subject to intrusive 
debug. Table 2 identifies two notional debug states. One, called PRoT Debug, covers explicit debug of the 
PRoT and PRoT Services. The other, called Non-PRoT Debug, covers the security requirements for the PRoT, 
PRoT services and any ARoT services that may arise when debugging any other part of the device. An 
implementation where debug in a Non-PRoT debug state cannot guarantee that the PRoT and PRoT services 
are free from compromise is indistinguishable from the PRoT Debug. Note that the actual debug states and 
options that are available to the manufacturer will depend on the specific hardware implementation on the 
device. 

The act of entering a debug mode should be by a secure mechanism, typically some form of authentication, 
even if protection of the sensitive assets is not implemented. 

Table 2: Intrusive debug 

Debug 
State 

Secure and 
Attestable 

Security Implications/Requirements 

PRoT 
Debug 

No 

Non-recoverable  
Compromises PRoT operation and platform security parameters, any PRoT 

services and any ARoT services. 

Recoverable 

May compromise the PRoT operation while in this state but cannot 
compromise the platform security parameters. 

Non-
PRoT 

Debug 
Yes 

PRoT, PRoT services and any ARoT services remain intact and trustworthy. 

Compromises only ARoT services and data. PRoT operation and platform 
security parameters, and PRoT services remain intact and trustworthy. 

 

Intrusive forms of debug should be restricted to authorized debug agents and require a secure authorization 
process, with the debug rights granted by an appropriate device management service. This process is beyond 
the scope of this document. However, other platform security specifications provide guidance. Non-PRoT 
debug is beyond the scope of this document. 

Debug of the PRoT is the most intrusive. When the PRoT debug state is entered it must not be possible to 
issue an attestation token that is signed using the Initial Attestation Key. This is because the device is no 
longer in a trustworthy state. Also, it must not be possible to derive production binding keys in order to 
prevent access to securely stored data, see section 5. 
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Recoverable PRoT debug applies to devices that can deny access to production platform security secret 
parameters when in PRoT debug state and can be restored to a fully trustworthy and attestable state on exit, 
provided the debug activity has not compromised the Secured state. 

Non-recoverable PRoT debug applies to devices that are not able to protect the platform security 
parameters and are not able to ensure that the debug has not compromised the Secured state. This type of 
device must make the platform security parameters permanently inaccessible on entry to debug. The only 
valid next state is Decommissioned. 

4.2 Lifecycle of other components 

Other components in a system, for example, trusted subsystems, the system software, and application 
software, may have their own lifecycles The overall product built from the components may also have its own 
lifecycle. Such lifecycles, and any associated data, are implementation or application specific and out of scope 
of this document. Note that such lifecycles must never be in a state that conflicts with or compromises the 
security requirements of the Platform Root of Trust security lifecycle. 
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5 PRoT Binding 
The following types of binding are applicable when sensitive data owned by secure partitions are stored in 
Non-isolated Storage, see section 2.3. Binding may also be used to protect Internal Trusted Storage. 

• Device binding binds the data to the owning device instance. No other device instances can directly 
access the data. 

• Partition binding binds the data to the owning secure partition. No other partition in any processing 
environment can directly access the data. 

• Lifecycle State Binding binds the data to specific security lifecycle state, see section 4. 

Binding relies on secret keys and cryptography. The generation and storage of the required keys depends on 
the lifecycle security state, which includes the supported debug modes. It is recommended to use run-time-
derived keys to support lifecycle binding, see section 4. Derivation is essential if recoverable debug is 
supported because the return to the secured state requires the generation of the secured state keys. 

Section 5.2 outlines a run-time key derivation scheme to support partition binding. 

5.1 Device-binding Root Keys 

Two binding root keys are defined. Both are security lifecycle-state dependent, and so should be derived 
after a system reset. Derivation for device binding is essential if recoverable debug is supported. 

• Secure BRK (SBRK): The same key can only be derived when the device is in a secure security 
lifecycle state, see section 4. This ensures that the data that is bound to this key cannot be accessed 
when the device is in any debug mode. 

• Non-PRoT Debug BRK (DBRK): The same key can only be derived when the device is in a secure 
security lifecycle state, or in any debug mode that does not compromise the PRoT, see section 4). This 
key should only be used when it is acceptable for any data that is bound to it can be accessed when 
the device is in a debug mode. 

This means that any PRoT data that is cryptographically secured should be bound only to SBRK. 

Derivation of the binding root keys must be through a cryptographic one-way derivation from a hardware 
unique secret key, for example, the Hardware Unique Key, see Table 1. Derivation ensures that any derived 
BRK is unique to the device. The derivation must result in SBRK and DBRK being different. 

The derived SBRK or DBRK should be used only to derive a Partition Specific Binding Key (PSBK), see section 
5.2. 

5.2 Secure Partition-specific Binding Keys 

Partition Specific Binding Keys (PBSKs) are required where binding to a secure partition is required. The 
derived PSBK will be unique to that secure partition. 

Each PSBK is a cryptographic one-way derivation either from one of the binding root keys, see section 5.1, or 
from an existing derived PSBK that is owned by that secure partition. This means that all PSBKs are 
ultimately derived from either SBRK or DBRK. When a PSBK is derived, the following data are used. 

• Explicit parameters provided by the calling secure partition: 

o Seed: Allows the derivation of different PSBKs for different secure partition specific use cases 

o Use Policy for the derived PSBK: One and only one of: 

▪ Encryption/decryption 
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▪ Signing/verification 

▪ PSBK derivation: The derived PSBK can only be used to derive other PSBKs 

o Debug Policy, with reference to section 5.1, one of: 

▪ Secure: The PSBK derivation must be anchored at SBRK 

▪ Non-PRoT Debug: The PSBK must be anchored at DBRK 

• The identity of the calling secure partition, which is called the Partition ID, must be an implicit 
parameter that is provided on behalf of the calling secure partition. This binds the derived PSBK to 
that secure partition and guarantees the uniqueness of the derived PBSK 

The Use Policy does not include export in the clear of the derived PSBK. Thus, a PSBK cannot be used where 
shared knowledge of the key is required. 
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6 PRoT Secure Boot and Firmware Update 
All devices must support a secure boot flow to ensure only authorized software can be executed on the 
platform. Secure boot, sometimes called verified boot, uses cryptography to verify the next stage code and 
any metadata. Execution of the next stage proceeds only if any validation checks on the verified metadata 
pass, for example, version comparison, see section 6.3. 

Secure boot is required for the firmware and software in the SPE. It should also apply to the first NSPE image 
loaded. Note that in some contexts, the term Measured Boot is used, however, this involves measuring the 
code, typically for attestation, but without any verification and validity checks. 

The secure boot flow must start with an inherently trusted Boot ROM in the Immutable PRoT; this is the 
trust anchor for the boot validation chain. Both the following are recommended, as shown in Figure 12: 

• The Boot ROM is small, simple, and verifiable. This minimizes the risk of a vulnerability that cannot be 
corrected once on the chip, and 

• The complex steps are handled by a main bootloader, which is subject to validity check by the Boot 
ROM, because it can be corrected through a secure firmware update process, see section 6.5 

 

 

Figure 12: Example Secure Boot Flow 

The example in Figure 12 shows the Main Bootloader verifying and validating the Platform and Application 
Root of Trust codes. Figure 12 also shows that the NSPE First Stage Loader is also verified and validated, and 
that it verifies and validates each of the NSPE images. Actual implementations may include more boot stages, 
or support multiple images to allow for incremental updates, or to support supply chains with different 
signing entities. Any such variation must meet the following security properties to establish a secure boot 
chain: 

1. A device must always boot from a fixed address in the Boot ROM following system reset. This is 
because it acts as the trust anchor for the secure boot chain. The term system reset is used to 
describe a complete system reset, including any trusted subsystems, see section 1.3.3. No run-time 
state from before the reset should be retained or used, except where necessary if suspend or 
hibernate are supported, see section 1.3.3. 
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2. The Boot ROM verifies and validates all images that are associated with the next stage before 
executing any next stage code. The immutable Boot Validation Key (BVK), see Table 1, is used. The 
BVK is the public part of an asymmetric key pair. Despite being a public key, it is good practice to 
consider a BVK as secret. The Boot ROM may use a stored hash value for the second and subsequent 
verification of the same image, see section 6.1. 

3. The next stage verifies and validates all data and images that are associated with the following stage 
before executing any of the following stage code. This process is repeated until all the chained images 
have been verified and validated. The keys required and any management of anti-rollback, see 
section 6.3, are not defined by the Platform Root of Trust. However, following the principles that are 
outlined in this document is recommended. 

6.1 Image Signing, Validation and Encryption 

All images should be signed using asymmetric cryptography and must be verified before use. Each signature 
must cover at least the image content, for example code and data, any critical parameters, for example, entry 
point for the code, and the version number, see section 6.2. 

Asymmetric cryptography during boot can be too time-consuming for some applications. Securely storing the 
computed cryptographic hash value of the images verified during an initial secure boot asymmetric check 
allows the stored value to be used to reduce the time on subsequent checks. Using a saved hash value in this 
way is called Hash Locking. For the hash to be secure, the stored value must be accessible only by the Boot 
ROM. To prevent the execution of a different image, the stored hash value should be integrity protected. To 
prevent the use of an old image, the integrity-protected stored hash should also be replay protected. To 
support update, the stored hash value must be updateable. 

The private counterpart of the on-device Boot Validation Key, see Table 1, must be held securely by the 
operator or device manufacturer, and should never be stored on the device. This applies also to the private 
counterparts of any other on-device keys that are used in the validation of the boot chain. 

Symmetric signing is not recommended. This is because any disclosure of the key from a compromised device 
allows any image to be signed. If symmetric signing is unavoidable then the key must be unique per device, 
thus compromising one device does not allow images for another to be signed. 

Boot images should be encrypted if they contain sensitive data or code. This requires a secret Boot 
Decryption Key that should be available only to the Immutable PRoT. That key may be stored in an Isolated or 
Shielded Location or derived from another Isolated or Shielded Location. It is normal for the image to be 
signed then encrypted, thus the device decrypts the image before verification and validation. However, if the 
content is considered confidential and should not be visible to the signing entity then encryption followed by 
signing is necessary. 

6.2 Verified and Version Validated Components 

Regarding the example in Figure 12, the verified components column of Table 3 shows the minimal set of 
verified components. If a component comprises multiple sub-images, each image should be verified 
separately. For the version checked components columns, see section 6.3. 
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Table 3: Verification and version check requirements 

Component 

Verified components Version checked components 

Secure boot 
verification 

Hash recorded 
for attestation 

Anti-rollback 
check 

Version recorded 
for attestation 

Boot ROM N/A N/A N/A Yes 

Main Bootloader 

Yes Yes Yes Yes 
Platform Root of Trust 

Trusted Subsystems 

Application Root of Trust 

Application Loader Yes Yes Yes Yes 

6.3 Anti-rollback 

Anti-rollback is used to reject earlier versions of the firmware, software or data that may contain known 
errors or vulnerabilities. Secure boot must only allow components that have the same or newer (typically 
higher) version number than the reference version number for that component to be executed. To ensure 
that the component version number is valid, it must be included in the signature of the component and 
verified before use. The verified version number of each software component must be compared against a 
reference version number as part of a secure boot process. To ensure the integrity of the reference version 
number, it is, typically, stored in an updateable Isolated Location. 

The Boot ROM must include an anti-rollback check on all images that it verifies on devices in the Secured 
lifecycle state, see section 4. Policies for updating the reference number used by the Boot ROM are covered 
in section 6.3.1 and section 6.3.2. Subsequent stages in the secure boot chain should include an anti-rollback 
check on the images that are validated by that stage. The principles that are discussed in section 6.3.1 and 
section 6.3.2 can be applied. 

Regarding the example in Figure 12, the minimal set of version-checked components is given in the Version 
Checked Components columns of Table 3. 

For the purposes of attestation, see section 7.3, the version of the Boot ROM must also be recorded. If 
components are not individually versioned, they should be recorded with the version of the overall image.  

6.3.1 Anti-rollback Reference Version Update 

The reference version number must be updated only within a secure boot process. Operational requirements 
will determine when this is done. For the version checks that are performed by the Boot ROM, the following 
methods are recognized: 

• Automatic update on reset: The Boot ROM updates the anti-rollback reference version when it has 
successfully loaded a newer version4. Success means that the image has passed all secure boot 
checks. 

 
4 Where the Boot ROM can differentiate an intentional reset from a failure-induced reset, it may choose not 
to update the reference counter in the case of a failure reset and so fall back to the last known good version. 
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• Update on command: The anti-rollback reference version is updated in response to a secure message 
from an external device management service. This means that the existing version is revoked only 
after the device management service signals that the newer version has no identified faults. 

The first option does not support a legitimate rollback if the new image boots correctly, but some aspect of its 
function is later found to be broken and the service provider decides that it is necessary to rollback to an 
earlier version. 

The second option means that the service provider decides when to revoke the previous version after rolling 
out a newer version to the device. This option may also signal which version, that is newer than the current 
anti-rollback reference counter, to load if more than one version is available. A secure messaging service is 
required to ensure that the messages are from a trusted command issuer and are replay protected. This 
ability to legitimately rollback leaves devices susceptible to illegitimate rollback for longer. This ability also 
makes devices susceptible to denial-of-service attacks that block the update message. 

To ensure that a device remains bootable, the device should never set the reference version counter to a 
value that is higher than the value of the newest image that is available. 

6.3.2 Anti-rollback Reference Number Reset 

Where the chip uses a technology that allows the reference version number to be reset, the device can 
support a factory reset mode or can be signaled from a device management service to reset the reference 
number. This requires a secure messaging service5 to ensure that messages are from a trusted command 
issuer and are replay protected. 

6.4 Boot State 

Boot state refers to the data intentionally left at a temporal isolation boundary (section 1.3.2) in the secure 
boot flow. There are two isolation boundaries defined, as shown in Figure 12, leading to an Initial Boot State 
and a Main Boot State. 

6.4.1 Initial Boot State 

The initial boot state is the set of data that is provided by the Boot ROM for use by the Main Bootloader. 
Initial boot state includes the following: 

• A random boot seed that is generated on each system reset. This can be used by later services, for 
example, to allow an attestation validation entity to ensure that attestation reports for different 
Attestation End Points, see section 7.3, were generated in the same boot session 

• For each component that is validated by the Boot ROM, see Table 3, at least the following component 
information must be captured: 

o Version 

o Signer Identity6 

o The measurement that is made by the Boot ROM 

 
5 It must not be easier to subvert the messaging protocol than to subvert the secure boot. This means that 
authentication of the command issuer should have at least the same cryptographic properties as the ones 
that are used for image signing. 
6 The Signer Identity, if present, would typically be in image metadata. 
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• Any Initial Parameters, see Table 1, that are required by later stages must be copied from Isolated 
Locations or Shielded locations, or be derived as appropriate. This is to comply with the parameter 
visibility rules. See section 3. 

Initial boot state must be only directly accessible to the Main Bootloader, and should not be modified once 
set by the Boot ROM. 

6.4.2 Main Boot State 

The main boot state is the set of data provided by the Main Bootloader for use by the Platform Root of Trust 
Services. The main boot state includes the following: 

• The initial boot state data, see section 6.4.1 

• All platform security parameters, see Table 1, must be copied to the main boot state, to comply with 
the parameter visibility rules. see section 3 

• For each component that is validated by the Main Bootloader, see Table 3, at least the following 
component information must be captured: version and signer ID6 and the measurement that is made 
by the Main Bootloader code 

Main Boot State must be only directly accessible to the Platform Root of Trust services, and to ensure that 
the data are trusted, should not be modified once set by the Main Bootloader. 

6.5 Firmware Update 

Update of firmware is crucial for fixing security vulnerabilities and enhancing the features of devices that are 
already deployed. It is essential that the update mechanism cannot be used to compromise the device with 
unauthorized software. 

The selection and download of updates depend on the specific ecosystem and is not defined here. Ideally: 

• Downloads are over a secure connection from an authorized repository. This helps to prevent 
networked attackers from sending arbitrary images, though this may make it impractical for future 
operators to use a different repository. The download may be encrypted 

• Downloads are authenticated and integrity checked at the time of download, though this may be 
impractical in some constrained systems. The checks should follow the concepts that are covered in 
the other parts of section 6  

Where resources permit, a banking scheme is recommended. This ensures that a bootable image is always 
available until that image is revoked through increment of the anti-rollback reference counter, see 
section 6.3.1. This requires enough non-volatile memory to store at least two copies of the images and any 
dependencies. 

In all cases, a new image can only be executed after it has been validated by the secure boot process as 
covered in this section 6. 

6.6 System Suspend and Hibernation 

Suspension and hibernation are low power modes that allow a device to resume from a known point more 
rapidly than a full system start (a cold boot). Support for either is optional. 

Suspension and hibernation both require the saving of enough state before going into the low power mode to 
allow resumption when the power is re-applied. Suspension typically means that some of that state is held in 
an always-on-power domain on the chip, and any dynamic RAM is placed in self-refresh mode. Hibernation 
typically means that all the state is written to some persistent storage before the power is removed. Some of 
this storage must be on-chip to deny substitution and ensure integrity and freshness. 
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The state that is necessary for resumption may be accessible when the device is suspended or hibernated. 
This introduces the risk that it can be modified, breaching the principle that a system that has been 
suspended or hibernated should be indistinguishable from one that has not. Therefore, that state must be 
subject to integrity and replay checks on resumption. It may also need to be subject to privacy protection too, 
for example, secrets may need to be erased or encrypted. 

In general, deciding whether to suspend, hibernate, or shut down can be performed by application code. For 
suspension or hibernation, the creation and signing of the required resume state, and the process of entering 
the low power mode, must be performed by trusted code. On resume, validation of the saved resume state 
must be performed by trusted code anchored in the Boot ROM. 

If the integrity of any of the saved resume state is invalid, or replay is detected, then the Boot ROM must 
proceed with a full system restart. 
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7 PRoT Services 
This section covers the Platform Root of Trust Services that are made available to any secure partitions, see 
section 2 and Figure 10. They may also be made available to other partitions provided that the isolation 
properties are met. PSM does not require the use of any specific API. However, APIs are available and are 
referenced in this section as examples, and PSA Certified has an API functional compliance programme. 

7.1 Internal Trusted Storage 

Internal trusted storage provides secure partition access to data stored in isolated locations and shielded 
locations, see sections 2.1 and 2.2. Individual data objects have an owning secure partition. Only the owning 
secure partition can access or modification its data. 

Access to sensitive data may depend on the security lifecycle state, see section 4. For example, it may be 
necessary to deny access to debugging agents when in any debug state. Access for other lifecycle states is 
application dependent.  

Implementation may rely on the physical access properties of isolated locations or shielded locations, or by 
binding based on the security lifecycle state of the device, see section 5. 

Internal Trusted Storage is supported by the PSA Storage API. 

7.2 Cryptographic Operations 

The cryptographic operations service performs cryptographic processing using input, derived, or persistent 
keys that are stored in isolated locations or shielded locations. Implementations should meet the following 
essential security properties: 

1. Isolation: Keys and other sensitive data is isolated within the cryptographic service, so that this type 
of material is not exposed to less trusted software7 

2. Access control: Keys and other sensitive data must have an owning secure partition and can be used 
only by that partition. However, see the next point: Policy 

3. Policy: This property restricts how individual keys and secrets that are owned by a specific secure 
partition can be used by that partition, preventing misuse 

The minimum set of cryptographic policy options is as follows: 

• Usage, including allowing or denying the use of specific algorithms or modes to a specific key for 
encryption, decryption, derivation, signing and verification 

• Export: none, clear, wrapped or delegate. Delegation allows a secure partition to make a key that it 
owns available, with specified usage and export policies, to another specified secure partition or any 
non-PSM partition, for example, the Non-secure Processing Environment in Figure 2. The usage and 
export policies of a delegate key may be more restrictive than the source key, but the policies cannot 
be relaxed 

Cryptographic algorithm support, modes and key sizes will depend on the use cases, any certification profile, 
or applicable regional or application. It is recommended to use algorithms with at least 128-bits of security. 

 
7 This does not prevent the use of hardware solutions where the cryptographic service can only request the 
hardware to use a key. 

https://www.psacertified.org/development-resources/building-in-security/specifications-implementations/#functional-apis
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A source of random data is required, typically for establishing a secure communication channel. A True 
Random Number Generator (TRNG) or a suitably seeded Deterministic Random Bit Generator (DRBG) 
should be used to provide such random data. 

The PSA Crypto API provides an interface to the cryptographic operations. Meeting the properties list above 
is dependent upon the implementation. 

7.3 Initial Attestation Service 

Evidence provided in an attestation report makes a statement about the state of the entity being attested 
and is the Attestation End Point (AEP) in Figure 13. An attestation report is intended to be checked by an 
Attestation Validation Entity (VE). Deployment of attestation services is eco-system dependent. The scope of 
the AEP and how the attested AEP report is used are application specific and not defined by PSM. 

The Initial Attestation Service (IAS) provides a signed Initial Attestation Token (IAT). The IAT includes the 
state of the Platform Root-of-Trust, including whether a debug state has been entered, and any claims made 
by AEP. The IAT is bound to the specific device instance through use of the Initial Attestation Key (IAK), see 
section 3. The format of the IAT is not defined by PSM, however, the PSA Attestation API supports CBOR 
encoded IETF Entity Attestation Token. 

 

 

Figure 13: Attestation context 

Figure 14 illustrates a typical initial attestation sequence. The validation entity (VE) challenges the 
Attestation End Point with the metadata in the object record VEOR, the content and use depend on the 
attestation scheme. Use of a nonce in each challenge to ensure freshness of the data is recommended. 

The AEP requests an Initial Attestation Token (IAT) from the Initial Attestation Service, providing at least the 
metadata that must be validated by the VE for the attestation scheme. Typically, this will be a cryptographic 
hash of the AEP-specific data in the object record AEPOR, and VEOR. 

The Initial Attestation Service constructs the object record, IASOR, which typically includes: 

• The boot seed from the Initial Boot State and the boot state of every updateable component loaded 
at secure boot. See section 6.4 

https://www.psacertified.org/development-resources/building-in-security/specifications-implementations/#functional-apis
https://www.psacertified.org/development-resources/building-in-security/specifications-implementations/#functional-apis
https://datatracker.ietf.org/doc/draft-tschofenig-rats-psa-token/
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• Current security lifecycle state of the system. See section 4 

• Instance ID and Implementation ID, see section 3, and calling Partition ID 
 

The Initial Attestation Key is used to sign a cryptographic hash of the data from the AEP and IASOR. Once 
signed using the IAK, it is returned to the AEP. This is the Initial Attestation Token. 

 

 

Figure 14: Example initial attestation challenge and response sequence 

The challenge is then completed by the AEP returning the signed IAT and its object record AEPOR to the 
validation entity. The VE can use the returned data along with knowledge of a valid set of updateable 
components for the corresponding implementation to validate: 

• The trustworthiness of the Platform Root of Trust and its implementation 

• The authenticity of the Object Record AEPOR 

• The context of the original validating entity challenge data VEOR 

The Initial Attestation Service can form the basis of delegated attestation. For example, a Delegated 
Attestation Service generates its own attestation key, which is included in the Initial Attestation Token by 
invoking the Initial Attestation Service. This provides proof of possession of the Initial Attestation Key as the 
root of the delegated attestation service. 

7.4 Secure Storage 

Many devices require secure persistent storage to hold sensitive data. That data could come from the 
manufacturer, or could be application-generated, service-generated, or user-generated. Such storage is 
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called non-isolated storage, see section 2.3, and is typically implemented with flash memory either on- or off-
chip. 

Secure storage is expected to be available to Application RoT services, but may be available to other 
partitions provided that that the following properties are met: 

• Defined ownership of all stored data, regardless of the management of data on the storage device 

• Privacy and integrity protection to prevent the data from being accessed or modified by an 
unauthorized agent, including when the device is in a non-secure state, such as during debug 

• Replay protection to prevent a stored set of data from being replaced by a previously stored version 
of the data set 

Depending on implementation requirements and certification profiles, these properties may be enforced by 
isolation, or by cryptography, or a combination of both, see section 5. 

Secure storage is supported by the PSA Storage API. 

 

https://www.psacertified.org/development-resources/building-in-security/specifications-implementations/#functional-apis
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